220
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Hu, W., Yang, H., Yan, Y., Wei, Y., Tie, W., Ding, Z., & Zuo, J., (2016). Genome-wide
characterization and analysis of bZIP transcription factor gene family related to abiotic
stress in cassava. Nature, 7, 22783.
Hu, X. J., Zhang, Z. B., Xu, P., Fu, Z. Y., Hu, S. B., & Song, W. Y., (2010). Multifunctional
genes: The cross talk among the regulation networks of abiotic stress responses. Biol.
Plant., 54, 213–223.
Huang, C., Zhou, J., Jie, Y., Xing, H., Zhong, Y., Yu, W., She, W., et al., (2016). A ramie bZIP
transcription factor BnbZIP2 is involved in drought, salt, and heavy metal stress response.
DNA Cell Biol., 35, 776–786.
Huang, D., & Dai, W., (2015). Molecular characterization of the basic helix-loop-helix
(bHLH) genes that are differentially expressed and induced by iron deficiency in Populus.
Plant Cell Rep., 34, 1211–1224.
Huang, G. T., Ma, S. L., Bai, L. P., Zhang, L., Ma, H., Jia, P., Liu, J., et al., (2012). Signal
transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep., 39, 969–987.
Huang, Q., Wang, Y., Li, B., Chang, J., Chen, M., Li, K., Yan, G., & He, G., (2015). TaNAC29,
a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic
Arabidopsis. BMC Plant Biol., 15, 1–15.
Huang, X., Li, K., Xu, X., Yao, Z., Jin, C., & Zhang, S., (2015). Genome-wide analysis of
WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and
patterns under drought stress. BMC Genom., 16, 1–14.
Huo, T., Wang, C. T., Yu, T. F., Wang, D. M., Li, M., Zhao, D., Li, X. T., et al., (2021).
Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in
transgenic Arabidopsis. Sci. Rep., 11, 4024.
Hussain, S. S., Iqbal, M. T., Arif, M. A., & Amjad, M., (2011b). Beyond osmolytes and
transcription factors: Drought tolerance in plants via protective proteins and aquaporins.
Biol. Plant., 55, 401–413.
Hussain, S. S., Kayani, M. A., & Amjad, M., (2011a). Transcription factors as tools to engineer
enhanced drought stress tolerance in plants. Biotechnol. Prog., 27, 297–306.
Hussain, S. S., Raza, H., Afzal, I., & Kayani, M. A., (2012). Transgenic plants for abiotic
stress tolerance: Current status. Arch. Agron. Soil Sci., 58, 693–721.
Hwang, W. Y., Fu, Y. F., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R.
T., et al., (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat.
Biotechnol., 31, 227–229.
Inukai, S., Kock, K. H., & Bulyk, M. L., (2017). Transcription factor–DNA binding: Beyond
binding site motifs. Curr. Opin. Genet. Dev., 43, 110–119.
Ishihama, N., & Yoshioka, H., (2012). Post-translational regulation of WRKY transcription
fac- tors in plant immunity. Curr. Opin. Plant Biol., 15, 431–437.
Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, S., Shinozaki, K.,
& Yamaguchi-Shinozaki, K., (2006). Functional analysis of rice DREB1/CBF type
transcription factors involved in cold responsive gene expression in transgenic rice. Plant
Cell Physiol., 47, 141–153.
Iturriaga, G., Gaff, G. F., & Zentella, R., (2000). New desiccation tolerant plants, including a
grass in the central highlands of Mexico, accumulate trehalose. Aust. J. Bot., 48, 153–158.
Javed, T., Shabbir, R., Ali, A., Afzal, I., Zaheer, U., & Gao, A. J., (2020). Transcription factors
in plant stress responses: Challenges and potential for sugarcane improvement. Plants, 9,
491.